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Recently we presented an up to now unstudied three-dimensional dynamical system 
which is, according to our given definition, the smallest chemical reaction system with 
Hopf bifurcation. We here study the Hopf bifurcation in detail and prove that near the 
bifurcation point a stable limit cycle arises. In the analysis we use the methods of local 
bifurcation theory, especially the center manifold and the normal form theorem. In a 
similar way we analyse the also occurring transcritical bifurcation. Besides studying 
local stability, we give the proofs for global stability of the trivial steady state in the 
whole positive phase space and for the nontrivial steady state in a closed domain con- 
taining the steady state point. 

1. Introduct ion  

In  a p rev ious  p a p e r  [1] we p resen ted  the smallest  chemica l  r eac t ion  sys tem 
wi th  H o p f  b i fu rca t ion .  Its m e c h a n i s m  is dep ic ted  in scheme 1. In  the def in i t ion  fo r  
w h a t  we do  m e a n  by  the " sma l l e s t "  sys tem we stressed the fac t  t ha t  the sys tem is 
the  m a t h e m a t i c a l l y  mos t  simple one wi th  this k ind  o f  d y n a m i c  behavior .  So it is the 
on ly  t h r e e - c o m p o n e n t  chemica l  r eac t ion  sys tem with  H o p f  b i fu rca t ion  tha t  
con ta ins  besides l inear  te rms only  one  quad ra t i c  non l inea r i ty  in its d i f ferent ia l  

equa t ions :  

2 = k x  - k 2 x y ,  

~ - = - k 3 y + k s z ,  

~ = k 4 x  - k s z  (1) 

wi th  k = k l A  - k4 and  ki > 0 where  ki and  A deno te  ra te  cons tan t s  a n d  the f ixed 
c o n c e n t r a t i o n  o f  the ou te r  r eac t an t  o f  the au toca ta ly t i c  reac t ion ,  respect ively .  D u e  
to  its s impl ic i ty  the sys tem is well sui ted for  fu r the r  m a t h e m a t i c a l  t r ea tmen t .  
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Scheme 1. Reaction scheme of the smallest chemical reaction system with Hopfbifurcation. 

All (quantitative) information about the system would be gained if one could 
integrate it in an analytical manner. Because of the nonlinearity in the differential 
equations there is no general algorithm to do so. One can write the nonlinear system 
(1) of three differential equations of first order in the form of one nonlinear differ- 
ential equation of third order: 

= 2 C ( - k  3 - k 5 -~- 3JcIx)  -~- J c ( - k 3 k  5 --t- Jc Ix (k3  ~- k5) - 2(5c/x) 2) 

+ ksx(kk3 - k z k 4 x ) ,  (2) 

but no analytical solution for this system is known, neither in the form of (1) nor 
(2) (cf. e.g. [2]). With numerical integration we can obtain a picture of the system 
behavior which is in the most cases correct. (A well-known example for a wrong 
numerical result is the integration of the oscillator with feedback inhibition given 
by Goodwin (cf. [3]).) 

In [1] we have shown numerically that system (1) possesses a stable limit cycle. 
Of course it is important to give an analytical proof for this result. A detailed anal- 
ysis of the Hopf bifurcation, using the methods of local bifurcation theory, espe- 
cially the center manifold and the normal form theorem (cf. [4]), proves that a 
stable limit cycle arises. In a similar way we do also study the second occurring 
steady state bifurcation, the transcritical bifurcation. 

Besides detecting and analysing the bifurcation points it is important to study 
the global stability in order to obtain a reliable right picture of the qualitative 
system behavior. For the parameter region where the trivial steady state 
(2 = ~, = ~ = 0) is stable we give a simple Lyapunov function to show that this state 
is also globally stable. Although numerical integrations indicate that also the non- 
trivial steady state is globally stable in the region of local stability we could not 
find a suitable Lyapunov function for proving this result for the whole positive 
phase space. However, we are able to give a Lyapunov function which proves the 
global stability in a certain domain containing the steady state point. Furthermore, 
we show that for proving the global stability in the whole positive phase space an 
appropriate Lyapunov function must be more complicated than a surface described 
by only first or second order terms. 
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2. Loca l  analysis 

2.1. L I N E A R  S T A B I L I T Y  A N A L Y S I S  

The system (1) has two steady states: 

1. 21 = . v 1 = 3 1 = 0 ,  (3) 

2. 22 = kk3/(k2k4) ,  Y2 = k /k2 ,  32 = kk3 / ( k2ks ) .  (4) 

It follows from the Hurwitz criterion that the first steady state is stable within the 
range -k4  < k < 0 and the second one within the range 0 < k < k3 -t-k5 (cf. [1]). 
The bifurcation diagram is given in fig. 1. 

The system has two bifurcation points. At k = 0 there only exists the trivial 
steady state at which the Jacobian has two real negative eigenvalues and one which 
equals zero. In the bifurcation diagram it can be seen that this point  seems to be a 
point  o fa  transcritical bifurcation. At the second bifurcation point k = k3 + k5 the 
trivial steady state is locally asymptotically unstable whereas the Jacobian at the 
positive steady state has one real negative and two purely imaginary eigenvalues, so 
it seems to be a Hopf  bifurcation point. At both bifurcation points the Jacobian of 
the system has at least one eigenvalue with a real part equal to zero so that one can- 
not  deduce the local stability behavior from the linear analysis. 

2.2. A N A L Y S I S  O F  T H E  S Y S T E M  A T  T H E  B I F U R C A T I O N  P O I N T S  W I T H  T H E  

M E T H O D S  O F  T H E  L O C A L  B I F U R C A T I O N  T H E O R Y  

A general aim of bifurcation theory is to get a classification of as many as possi- 
ble different types of  bifurcations. The theory is fairly complete only for the so- 
called codimension one and two bifurcations which can be contained in a parameter  
space of dimension at least one and two, resp. (see [4]). Both the transcritical and 
the Hopf  bifurcation are codimension one bifurcations, so the detailed analysis 
could be simplified by using the already known general theorems (cf. [5,6]). Never- 

X 

_ k 4  • , .  s "  

.s 
s 

0 k 3 + ~  k 

Fig. 1. Bifurcat ion d iag ram for system (1). - - - unstable ,  - -  s table s teady states. 
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theless we want to analyse both bifurcations in a unified manner using the methods 
of  local bifurcation theory. At first we reduce the dimension of the problem at the 
bifurcation point using the center manifold theorem. In this way one can already 
extract all relevant information about the transcritical bifurcation. For  simplifying 
the flux in the center manifold the normal form theorem is used in order to remove 
all nonnecessary terms up to a certain order while retaining the right qualitative 
behavior of the system at the bifurcation point. The result of this simplification is 
the so-called normal  form of the flux which makes for the codimension two bifurca- 
tions and the Hopf  bifurcation some symmetry properties of the bifurcation appar- 
ent [4]. The normal  form of the flux in the center manifold at a Hopf  bifurcation 
point contains for example no quadratic terms and is symmetric under the transfor- 
mat ion (x, y) --+ ( -y ,  x). 

2.2.1. The transcritical bifurcation 
In this section we analyse the system behavior at the point k = 0. At this bifurca- 

tion point the system has only the trivial steady state 2 = ~ = 2 = 0. The eigenva- 
lues of the Jacobian at this point are 

A1 = 0; A2 = -k3; A3 = - k s .  

Using the eigenvectors as the basis for a new coordinate system, equation system 
(1) can be transformed with the linear coordinate transformation 

W 

which involves the transformation matrix 

:/ 0 

r---  k5 1 (5) 

0 ks / 

into the system 

I kOOll l-- kskk kk3 k30 ksO (1/ ( )k2 -k2u ~u+v+w 
ks-k3 J 

, ( 6 )  

where the linear part  at k = 0 is in standard (diagonal) form. After adding k = 0 
as a fourth differential equation to system (6) it follows from the center manifold 
theorem (cf. [4]) that at (0, 0, 0, 0) exists a two-dimensional center manifold W c tan- 
gent to the plane spanned by the u- and k-axis. Therefore, W c can be approximated 
for the two variables v, w by the equations 
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v(u, k) = avU 2 +/3vuk + 7vk 2 + O(3), (7) 

w(u, k) = awu 2 + t3wuk + ~/w~ + O(3), 

where 0(3)  denotes terms of order u 3, u2k, u ~  and k 3. With 

Ov Ov • 
i~(u,k) = ~uU +~-~k,  (8) 

OW OW • 
iv ( u , k ) = -~u i~ + - ~  k , 

together with (6) and (7) after comparison of the coefficients for u 2, uk  and k 2 fol- 
lows the center manifold as an analytical expression for v(u, k) and w(u, k) up to sec- 
ond order. In this way one can approximate the center manifold up to any desired 
order. Inserting the so obtained expressions for v, w into the differential equation 
for u in system (6) one obtains approximately the flux in the center manifold which 
determines the dynamic behavior of the system in this case. Since the functions 
v(u, k),  w(u, k) are at least expressions of second order which are in the equation for 
u in (6) multiplied by u they can give only terms of order three and higher. There- 
fore, the flux in the center manifold up to second order reads 

k2k5 "~ 
il = u k - - r - - - u !  + O(3) , (9) 

~c3 ,/ 

k=0. 
Eq. (9) expresses the normal form of a transcritical bifurcation, so it is proven 
that  at the point  k = 0 this bifurcation occurs. Sketching the flux in the center mani- 
fold according to (9) one obtains the bifurcation diagram of a transcritical bifurca- 
tion. F rom (9) it can also be seen that the bifurcation point itself is locally stable 
for positive values ofu  and unstable for negative values. It follows from the inverse 
of  the transformation matrix T [eq. (5)] that u = ka /ksx .  Therefore, u is positive 
for all positive values of x. Since the trajectories are confined to the positive 
orthant,  the trivial steady state is locally stable at the transcritical bifurcation 
point. 

2. 2.2. The Hop fb i furca t ion  
For  analysing system (1) at the second bifurcation point k = k3 -t- k5 we introduce 
for the sake of simplicity the new time scale 7- = k3 t to eliminate the parameter  k3. 
With k / k 3  ---+ k ,  k i / k 3  "-'* ki,  (i = 2, 4, 5) the equation system reads 

k = k x  - k2xy ,  

29 = - Y  + ksz  , 
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= k4x - k5z. (1 O) 

The nontrivial steady state (4) at which the Hopfbifurcation occurs now reads 

)f = k / ( k 2 k 4 ) ;  ); = k / k 2 ;  2 = k / ( k 2 k 5 ) .  (11) 

[cf. eq. (4)]. The Jacobian of(10) at (11) follows as 

J =  0 - 1  k5 . (12) 

k4 0 -ks  

If the parameters fulfill the condition k -- 1 + k5 this Jacobian has one negative 
real and two purely imaginary eigenvalues: 

A1 = -1  - k s ;  A2/3 = i i v ~ 5 ,  (13) 

so the first condition for a Hopf bifurcation in the sense of the theorem given, e.g., 
in [4,7] is fulfilled. Nevertheless, for applying the Hopf bifurcation theorem a sec- 
ond condition must be fulfilled. The conjugate complex eigenvalue which is imagin- 
ary at the bifurcation point, k2/3 (k), must, if the parameter k is varied and the 
other parameters are fixed, cross the imaginary axes in the simple way: 

d 
(Re A2/3(k)  )lk=l+k 5 = d 7 ~ O, (14) 

where Re ),z/3 (k) denotes the real part of A which is a smooth function of k. From 
(12) follows the characteristic polynomial: 

A 3 + (1 + ks)A 2 + ksA + kk5 = 0. (15) 

We now calculate d as defined in (14) without solving (15) explicitly. Inserting 
# + iw for the complex eigenvalue into the characteristic polynomial (15) yields two 
independent equations for its real and imaginary parts. After implicit derivation 
with respect to k one obtains with # = 0 and w = ~ [cf. (13)] an inhomogeneous 
linear equation system which can easily be solved for aJ = dw/(dk)  and the 
searched d = #' = d#/(dk): 

k5 
d = 2(1 + 3k5 +ks  2) > 0. (16) 

Thus, also the second condition for a Hopf bifurcation is fulfilled and the Hopf  
bifurcation theorem holds. The frequency of the arising limit cycle follows from the 
imaginary eigenvalue of the Jacobian at the bifurcation point according to (13): 
COlk=l +ks --'~ g / ~  which reads in the original parameters a)lk=k3+k5 = v/kv/kv/kv/kv/kv/kv~. 

We now analyse the Hopf bifurcation of system (10) in detail. At first we give 
an expression for the flux in the center manifold at the bifurcation point which is 
two-dimensional (W c has the same dimension as the (generalized) eigenspace of the 
conjugate complex eigenvalue with zero real part.). Before using the center mani- 
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fold theorem one has to translate the steady state (11) into the origin. In the new 
coordinates x - Yc ~ x , y  - f~ --, y ,  z - ~ ~ zsystem (10) reads 

5c = - k / k 4 y  - k2xy  , 

= - y  + k s z ,  

k = k 4 x - k s z .  (17) 

With 

~ - - T  

where 

T = 
- 1  1 - i ~ 5  " ' 

1 1 

system (17) is transformed into the diagonalised system 

with 

(i) (1k50 0)(i) (kSjnl) 
= 0 - i v / ~ 5  0 + P 1/n2 

0 0 iv / -~  1/h2 

P = -k2(1 + ks)u 2 + auv + bv 2 + auw + bw 2 , 

(18) 

nl = 1 +4k5 + 4 ~  + k ~ , n 2  = 2v/~5(-i  - 2ik5 +k~ /2 )  (19) 

with 

a = v ~ s k 2 ( - i  + 2V~5 + k35/2), b = k35/2k2(i - ik5 - 2V~5), (20) 

where an overbar denotes complex conjugation. According to the center manifold 
theorem W c is tangent to E c = span{v, w}. Therefore one can approximate W c 
with u = h(v,  w) = a v  2 + f lvw + "/w 2 + 0(3). In the same way as already described 
for the transcritical bifurcation one can find expressions for a, fl, ~/. After inserting 
u = h(v,  w) into the equations for v, w in (18) one obtains an approximated expres- 
sion for the flux in the center manifold: 

( - - i v ~ s v )  g tuw) (1 /n2"~  
( ; ) =  \ i v ~ W  + ( b v 2 + D w 2 + a u v +  1/•2J (21) 
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with a, b, n2 from (19), (20) and 

k2k2(4k5 + i v /~ ( -1  +4k5 + ks2)) u = c v  2+~w2; c =  
(1 + 6k5 + k2)(1 + 4k5 + 4k 2 + k~)" 

In the second step we now simplify the expression for the flux in the center manifold 
by removing all of the redundant nonlinear terms. The most simple expression is 
the normal form which still contains all information about the qualitative behavior 
of the system at the bifurcation point. With a further linear coordinate transforma- 
tion, system (21) can be rewritten into a form which only contains real numbers giv- 
ing the so-called standard form. With 

v 1 " 

it follows that 

= _ V/~sX + 2~k2(ks(x2_ ¢2) + V~S(1 -ks )¢x) /n ,  

+ 4k4k~2(2ks(2 + k5)¢ 3 + v/~s ( - 4  + 7k5 + 6~  + k~)¢ZX 

+ (1 - 8k5 - 3~)¢X 2 + 2V/~sX3)/n, (22) 

)~= X/~-5~ + 2kskz(V~5(1 + 2k5)(~ 2 - X 2) + ( -1  - k s  + 2 ~ ) ~ x ) / n l  

+ 4k~ /Z~( ( -2ks (2  + 5k5 + 2 ~ ) (  3 + V~5(4 + k5 - 20~ - 13~ 

- 2k4)~2 X + ( -1  +6k5 + 19k~5 + 6k~)~X 2 -  2v~5(1 + 2ks)x3)/n 

with nx from (19), n = (1 + 6k5 + k~)(1 + ks)2(1 + 3k5 + ~ ) 2  Guckenheimer and 
Holmes [4] have explicitly shown that on the basis of the normal form theorem one 
finds a nonlinear coordinate transformation which transforms every system with 
the structure 

= + o(1 1, Ix l ) ,  (23)  

2 = + o(l l, Ixl) 

into the system 

b/ = --OYO -}- ( a u  - -  b13)(1/2 _1_ 2)2) nt - 0(4) ,  

iJ = wu + (av + bu)(u 2 + v 2) + O(4), 

which is expressed in polar coordinates as 

/- = a r  3 

(24) 

(25) 

O = ~ + b r  2 . 
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It can be seen that the sign of a determines the stability of the steady state at the 
H opf  bifurcation point. If one knows the general structure of  the normal  form then 
one can calculate the occurring coefficients in detail. Guckenheimer and Holmes 
carried out the procedure for calculating the coefficient a and gave the formula 

a = 1 / 16(fxxx + fxyy -}- gxxy q- gyyy 

+ 1/cO(fxy(fxx -t-fyy)--gxy(gxx +gyy)--fxxgxx +fyygyy)), (26) 

wherefxy denotes (02f/OxOy)(O, 0), etc. and f ,  g are the functions containing the 
nonlinear terms ofeq. (23). In the same way one can find an expression for the coef- 
ficient b. It follows that 

b = 1/16(gxx~ + gxyy --fxxy --fyyy 

+ 1/(3W)(5(fxxgxy +fxygyy --frxfyy _fy2y _ gxxgyy -- g2xx) 

-- 2 ~ x  -}-fffy + g2xy + g~yy) + fyygxy + fxygxx))- (27) 

Applying eqs. (26), (27) to expression (22) which has the structure of (23) one 
obtains 

a = (1 + 6k5 + k~)(1 + 3k5 + k~) < 0, (28) 

3/2 2 
b - k s  k2(1 +kS)(1 +9k5 + ~ )  

= < 0. (29) 
6(1 + 3ks+k~)(1 + 6 k s + k s  z) 

It follows from a < 0 that the steady state at the bifurcation point is a locally 
(weak) stable point. Since w = v~5 > 0 and b < 0 it can be seen from (25) that  there 
is a critical value r = r* where the direction of rotation changes. 

In appendix A we show how the normal form can be calculated in a direct way, 
which of  course gives the same results for the parameters a, b as (28), (29). 

Up  to now we have studied the system behavior exactly at the Hopf  bifurcation 
point where one has to analyse the flux in a two-dimensional center manifold. How- 
ever, the Hopf  bifurcation theorem contains even more information, because it 
gives the flux in the three-dimensional center manifold containing the one param- 
eter the bifurcation is depending on. Up  to the third order the normal  form in this 
case reads 

5c = (dcz + a(x 2 + y2))x - (w + c/.z + b(x 2 + y2))y, (30) 

= (w + clz + b(x 2 + y2)x + (d# + a(x 2 + y2))y, 

where the parameters a, b follow from (26),(27) and d is calculated in the way of  
(14). At # = 0 the bifurcation occurs. The Hopf  bifurcation theorem states that if 
the two conditions: (1) one pair of pure imaginary eigenvalues and no other eigen- 
values with zero real parts and (2) condition of equation (14) are both fulfilled 
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then a three-dimensional center manifold exists. If, moreover, a ¢ 0 then there is 
a surface of periodic solutions in W c. If a < 0 then these periodic solutions are 
stable limit cycles (supercritical Hopf bifurcation), if a > 0 they are repelling (sub- 
critical Hopf bifurcation). Since a < 0 [cf. eq. (28)] we can conclude that the Hopf  
bifurcation occurring in the original system (1) is for all allowed parameter values a 
supercritical one and the arising limit cycles are already locally stable. In polar 
coordinates, system (30) reads 

i" = (d# + ar2)r, (31) 

O = w + c# + br 2. 

Because the k equation is separate from 0 one can integrate it directly: 

d# (32) 
r = (a + @)e -2dut - a 

"0 

Since the parameters a and d are known from (28), (16) we have an up to third order 
approximate expression for the radius of the limit cycle and the dynamics with 
which this limit cycle will be reached depending on the parameter #. 

3. Global  stability analysis 

3.1. THE TRIVIAL STEADY STATE 

It follows from the local stability analysis that the trivial steady state is locally 
stable within the range -k4 ~< k <~ 0. Just from system (1) it can be seen that for the 
only chemically interesting positive values of the variables it also should be globally 
stable: In the given parameter range 5c is always negative, i.e. starting with a positive 
value for x0 the variable x will reach zero for t ~ oo. If x becomes very low, 
becomes negative, so also z will reach zero and for the same reason also y. The 
mathematical proof for global stability, however, requires the finding of a suitable 
Lyapunov function. For the trivial steady state this is quite easy because a simple 
linear surface is already sufficient for proving the global stability: The function 

V ( x , y , z ) = a x + b y + c z  (a,b,c >O) (33) 

fulfills the presupposition for a Lyapunov function for proving the global stability 
of the trivial steady state for the whole positive orthant: V ( 0 , 0 , 0 ) =  0, 
V(x, y, z) > 0 for all (x, y, z) ¢- (2, ~, ~,). With (1) it follows that 

V=-o-~xOV2 +--~yyOV" +OV~=oz ( a k + c k a ) x - b k 3 y +  ( b - c ) k s z - a k 2 x y  , (34) 

so ~" < 0 holds for all (x, y, z) ¢- (0, 0, 0) of the positive orthant if one chooses 
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a = - ( 1  + e l ) k 4 / k  + e2; b = 1; c = 1 + el (el, e2 > 0 ) .  With el = 1; e2 ~- - k 4 / k o n e  
obtains  a nice simple expression for the Lyapunov  funct ion (33): 

-3k4  
V ( x , y , z )  = k x + y + 2z ,  (35) 

which proves the global stability of  the trivial steady state for k < 0. 

3.2. THE NONTRIVIAL STEADY STATE 

The second steady state (4) of  system (1) is locally stable within the pa ramete r  
range O<~k<~k3 + ks. Numerica l  integrations for different initial values in this 
pa ramete r  range suggest that  it is also globally stable. General ly a L y a p u n o v  func- 
t ion for a mathemat ica l  p roo f  of  global stability is at first searched a m o n g  the class 
of  surfaces of  first or second order. It is now shown that  one cannot  prove the global 
stability for the whole positive or thant  of  the phase space with a quadrat ic  surface. 
The  mos t  general fo rm of  it is 

V(x ,  y, z) = ax  2 + by 2 + cz 2 + dxy  + exz  + f y z  + g x  + hy + iz.  (36) 

A suitable Lyapunov  funct ion V has the properties V(2, ~, 2) = 0, V(x ,  y, z) > 0 if 
(x, y, z) ¢ (2, ~, ~'), which gives the following condit ions for the quadrat ic  surface 
(36): 

g , h , i = O ,  (37) 

a, b, c > 0,  (38) 

4ab > d2,4ac > e 2, 4bc > f 2 ,  (39) 

4abc + d e f  > cd 2 + be 2 + a f  z . (40) 

Of  course the center  of  the so described ellipsoid mus t  correspond to the s teady 
state. The  funct ion V now reads 

Vs(x ,y ,  z) = a (x  - 2) 2 + b(y - ~)2 + c(z - 2) 2 

+ d ( x -  Yc)(y - ~) + e ( x -  2 ) ( z -  2) + f ( y  - y:)(z - 2) (41) 

and  it follows with (1) that  

~'s = x (~k  + tk4) - hk3y + ksz(h  - i) + x2(2ak + ek4) - 2bk3y 2 

+ ksz2(f - 2c) + x y ( d k  - gk2 - dk3 - '~-fk4) "4- x z ( e k  + 2ck4 

+ k s ( d  - e)) + yz(2bk5 - f ( k 3  + ks)) - 2ak2x2y 

- dk2xy  2 - ek2xyz ,  (42) 

where ~ = - 2 a 2  - d~ - e~,, h = -2b~  - d2 - f ~ ,  i = -2c~  - e2 - f ~ .  Global  sta- 
bility holds if the parameters  a, b, c, d, e , f  can be specified so that  t,'s < 0 for all 
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(x, y, z) ¢ (2, y, ~'). A necessary condition for that is that the summands for x 2 and 
xyz in (42) both have a negative sign which for the interesting parameter range 
k > 0 can never be true. So it can be seen that a quadratic surface cannot serve as a 
Lyapunov function for proving the global stability of the nontrivial steady state 
for the whole positive phase space. 

However, if one specifies a, b, c, d, e , f  in (41) in the following way: 

k4((k3 4- ks)(~/k3 4- ~ / k 5  4- k 4- k5 4- ks/k) 4- k3) (43) 
a = 2k3ks(k3 4- ks)(k3 4- ks - k) ' 

k (k(k3/k5 4- ks~k3 + 1) 2k3 4- k5 

k(k3/k5 4- ks~k3 4- 1) 
c = 2k4(k3 4- k5 - k) ' (45) 

d = k(k3/k5 4- ks~k3 4- 1) 1 
k5(k3 4- k5 - k) k3 4- k5 ' (46) 

1 
= - , (47) 

e k3 + k5 

k ( ~  + kk3) 
f = k3k4ks(k3 + k5 - k )  ' (48) 

one obtains a Lyapunov function which proves the global stability in certain finite 
surroundings of the steady state for the whole parameter region 0 < k < k3 4- k5. 
(Appendix B shows the way for finding these specifications.) Numerically one can 
find the extent of this region in calculating the scalar product of grad(V) and 
(k, ~, ~) for each point of the surface starting with small values of V and increasing 
V successively in small steps up to a value where at least one trajectory is directed 
outwards. Fig. 2 shows projections on the x, y-plane of the ellipsoids inside which 
the global stability is proven for six different values of the parameter k taken from 
the whole region 0 < k < k3 + ks. 

For the parameter region k > k3 4- k5 it would be very interesting to find a con- 
fined set, i.e. an outwards impermeable closed surface, containing the limit cycle in 
its inside. On this basis it could be possible to prove the existence of the limit cycle 
for the parameter k in a finite distance from k3 + k5 (cf. [3]) and eventually for a cer- 
tain domain the global stability of the limit cycle. The conditions on a general quad- 
ratic surface (36) for describing a closed surface Vcs are the same as for the 
Lyapunov function Vs (37)-(40) without conditions (37). For Vcs one therefore 
obtains again expression V~ (42) plus terms containing g, h, i. Now P'~ < 0 must 
hold not for all but only for x, y, z belonging to the surface corresponding to the one 
specified, Vcs = const. Finding appropriate functions a =f l  (ki) , . . . ,  i =f9(ki) so 
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Y 

0 1 X 2 

Fig. 2. Regions of proved global stability for six different parameter values: k2 = k3 = k4 = ks = 1, 
k = 0.3, 0.6, 0.9, 1.2, 1.5, 1.8 (from left to right) as projections on the x,y-plane. The corresponding 
maximal values for V~ of (41) with the specifications (43)-(48) where still all trajectories are crossing 

the surface inwards are: 0.06, 0.12, 0.16, 0.16, 0.12, 0.07. 

that this condition holds is, if at all possible, difficult. One therefore better use 
more refined methods such as, e.g., the construction of an auxiliary system of dif- 
ferential equations the solution of which describes the searched positive invariant 
set (see [8]). 

4. D i scuss ion  

By analysing the Hopf bifurcation we have shown that the arising limit cycle is 
locally stable near the bifurcation point. This raises the question of local stability of 
the limit cycle at finite distances from the bifurcation point and for eventual global 
stability of the limit cycle. With numerical integration we found a globally stable 
limit cycle for the whole parameter region with two locally unstable steady states. 
Generally the question of local stability of a limit cycle is handled in the framework 
of the Floquet theory. Unfortunately, we are not able to use this theory because 
we do not have an analytical expression for the limit cycle to linearise the system 
around it. But even if we could do so for systems with more than two variables there 
are no general methods available for calculating the characteristic multipliers or 
exponents which are the relevant quantities for the local stability of the limit 
cycle. 

One presupposition for proving global stability would be to find a closed surface 
containing the whole periodic orbit at which the vector field always points inward. 
Going on in this way Tyson [3] was able to prove the existence of a simple closed 
orbit for the Goodwin oscillator using Brouwer's fixed point theorem but not the 
stability itself. We have shown that it is too difficult to find such a surface among 
the class of quadratic surfaces and one should better use other methods for that pur- 
pose, such as the description of the closed invariant domain by the solution of an 
auxiliary system of differential equations (cf. [8]). 
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In [1] system (1) was defined as the smallest chemical reaction system with 
Hopf  bifurcation in a mathematical sense. In our given definition for the smallest 
system, the feature "lowest number of quadratic terms in the first order differential 
equation system", which expresses mathematical simplicity, has a higher priority 
than "lowest number of reactions", which is obviously more important  for simpli- 
city in a physical sense. However, system (1) can be transformed into another, 
mathematically equivalent, form. All expressions which represent the system in the 
form of three first order differential equations, e.g. the diagonalised form at the tri- 
vial steady state [cf (6)], cannot be easier than (1) or (10), because the quadratic non- 
linearity cannot be removed. It is interesting to note that system (1) expressed as 
one nonlinear third order differential equation [cf. (2)] looks quite complicated and 
it cannot be excluded that a chemical reaction system with Hopf  bifurcation may 
exist which, if written in the form of one third order differential equation, is easier 
than (2) and perhaps even accessible for an analytical integration. However, 
usually one uses first order differential equations for expressing a chemical reaction 
system and employs also this form for a first mathematical analysis. 

Unfortunately,  there seems to be no way to integrate eq. (2) at least one time to 
decrease the order of this differential equation. If one could do so one could exclude 
a lot of the potentially possible dynamic phenoma in three-dimensional systems. 
Although numerically we did not find more complicated behavior than a simple 
closed orbit it remains an open question whether there are parameter values at 
which the system shows, e.g., folded orbits, quasiperiodicity or chaos. 
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A p p e n d i x  A 

In this appendix we show how to calculate the normal form (24) with a nonlinear 
coordinate transformation directly. 

The Jacobian of a differential equation system at a Hopf  bifurcation point has 
two imaginary eigenvalues with a resonance of third order A1 +/~2 = 0. If there are 
no second order resonant eigenvalues it follows from the theorem of  Poincar6 that 
with a suitable variable transformation all quadratic but not all cubic terms of  
this system can be eliminated. From the theorem of Poincar6-Dulaque it follows 
that it is possible to transform a two-dimensional system at a Hopf  bifurcation 
point into the form given in eq. (24), which only contains the resonant terms. In the 
following we calculate the two coefficients a, b. At first the standard form of the 
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flux in the two-dimensional  center manifold  at the H o p f  bifurcat ion point  (22) is 
t r ans fo rmed  into a single complex equation: 

= A z + h ( z , ~ ) ,  (A.a) 

where z, denotes  complex conjugation,  with 

A =  i w =  iv/-k, 

h(z,  3) = o q z  2 + 0~2 Zz2 + 0~3 Z3 -[- o~4z2z + o~5zZz 2 -4- 0/623 -4- O(Iz[4), 

where 

c~j = xj + iyj(] = 1 , . . . , 6 )  

with 

X 1 

X 2 ~- 

X 3 

x 4 =  

X 5 

x 6 =  

with 

a X ~-.  

bx 

C x 

4 =  

(by - 2a~)/4 yl = (2ay - bx)/4,  

( - 2 a x  - by) /4  Y2 = (2ay + bx) /4 ,  

(c~ + dy - ex - f y ) / 8  Y3 = ~x -4- cy - dx - ey ) /8 ,  

(3Cx + ex + dy + 3L) /8  

(3Cx + ex - dy - 3fy)/8 

(Cx + f y - e x - d y ) / 8  

Y4 = (3Cy "4- ey -- dx - 3 f x ) / 8 ,  

Y5 = (dx + 3fx + 3Cy + e y ) / 8 ,  

Y6 = (dx + cy - f x  - e y ) / 8  

e X 

L 

with 

2k3k2/nl  

2kS/2k2(1 - k ) / n l  

8 ~ ( 2  + k)/n2 

ay = 2k3/2k2(1 + 2 k ) / n l ,  

by = 2kk2(-1 - k + 2kZ)/nl  , 

Cy = -8k7 /2~(2  + 5k + 2kZ)/n2, 

4 k 9 / 2 ~ ( - 4  + 7k + 6/~ + k3)/n2 

dy = 4k3/~2(4 + k - 20k 2 - 13k 3 - 2ka) /n2,  

4k4k~2(1 - 8k - 3k2)/n2 

ey = 4kS/2k~2(-1 + 6k + 19/~ + 6k3)/n2,  

8kg/2k~2/n2 fy = - 8 k 3 ~ ( 1  -t- 2k)/n2 
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nl = (1 + k)(1 + 3k + k2), n2 = n2(1 + 6k + k2). 

It follows from calculations based on the normal form theorem (see [4]) that the 
normal form of the flux in the center manifold at a Hopf bifurcation point has the 
structure given in eq. (24) which in the complex form reads 

~ -~- AW ÷ ClW2~-V ÷ C2W3fV 2 ÷ . . .  (A.2) 

with cj = aj + ibj. We now use the nonlinear coordinate transformation 

z = w + ~b(w, ~),  (A.3) 

where ~b is expressed as a Taylor series 

~b(w, ~) = ~bwwW~/2 + ~w~W~, + ~ b ~ 2 / 2  (A.4) 

+ CwwwW3/6 + Cww~W2CV/2 + Cw~w~/2 

÷ ~bcvcvcv~v3/6 ÷ O(Iwt4), 
to transform eq. (A. 1) into the form of (A.2) and so to determine the coefficients 
cj by equating the coefficients of the different Iw12-. Iwt 3-, etc., terms. From (A.3) 
and (A.2) it follows that 

= ¢v + CwVV + ¢,.~ 
: AW ÷ C1W2~'÷ C2W3f~ 2 ÷ . . .  

+ (¢wwW + ~bwc~g' + 1/2~bwwwW 2 + ¢ww~W~V + 1/2¢w~,~;v 2 + O(Iw[3)) 

(/~W ÷ £1W2~ ,' ÷ C2W3~ '2 ÷ . . . )  

+ (~bw,,W + ¢, ,~v + 1/2~bwwwW 2 + ~bw~wW~V + 1/2~b,~,~ 2 + O([w13)) 

(AW ÷ C1W21~ ÷ £2W3~-V 2 ÷ . . . ) .  (A.5) 

From (A. 1) and (A.3) it follows that 

= ~(w + ¢) + ~ (w + ¢)2 + ~ ( ~  + ~)2 + ~3(w + ¢)3 

÷ O~4( W ÷ ~D)2(~ ÷ ~) ÷ 0~5( W ÷ ~3)((. ÷ ~)2 ÷ 0~6( ~ ÷ ~)3 (A.6) 

with ~b from (A.4). Since eq. (A.5) must equal (A.6) for the O([w[2)-terms follows 
the equation 

.X~wwW 2 + .X~w~. + ~w~-~w + ~ - ~ c v  

= A(~bwwW2/2 + ~bw~WCV + ~b~fv2/2) + ~lW 2 + c~2~v 2 . (A.7) 

Equating the coefficients of w 2, w# and ;v 2 yields 

Cww = 2~/ ,X,  (A.8) 

(A.9) 
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~ = -2o~2/(3A). (A.10) 

By equating the coefficients of the w 2~,-terms of (A.5), (A.6) it follows that 

cl = 2~l~bw~ + c~2~bww + O~4, (A.11) 

and therefore with (A.9), (A. 10) the first coefficient of the normal form (A.2): 

2i 
Cl-- 3v/-~ [c~212 + c~4 • (A.12) 

Inserting c~2 and O~ 4 of (A.1) gives the expressions of (28), (29) for 
a = Re(Cl),b = Im(cl). 

Appendix B 

In this appendix we show a way of finding functions a =f l (ki ) ,  b =f2(ki),  
• .. , f  =f6(ki) so that Vs = f ( a ,  b, c, d, e , f )  of(41) is a Lyapunov function for prov- 
ing for the parameter region 0 < k < k3 + k5 the global stability in the surround- 
ings of the nontrivial steady state. The aim is reached if a - f  are specified in such a 
way that the function ~"s = f ( x ,  y, z) of (42) has a local maximum at ~"~(2, ~, 3) = 0. 
As it can be seen from eq. (42) the necessary condition for an extremum 

0V~ 0V~ = 0, __~__ z = 0  (B.1) 
Ox = 0, -~Y (~s,~) 

is always (i.e. for all values of the mrameters) fulfilled. The sufficient condition 
for a local maximum of Vs at the stea&' state reads: All eigenvalues of the matrix 

F(2, .~ ,2)= g~y ~"s, ¢,,.. , (B.2) 

where ~'s,~ denotes 02 Vs/Ox a (2, ~, ~), etc., of the corresponding quadratic form 
must be negative. From eq. (42) the matrix elements follow: 

Vsx~ = 2ek4, 

I/s, = -k3(2ak/k4 q- d) +fk4,  

~"s,,z = k5 (d - e) + 2ck4, 

~'sv = -2k3(dk/k4 + 2b), 
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Vs,,~ = 2bk5 - ek3k/k4 - f (k3 + ks),  

¢"s= = 2k50"- 2cl. 

Since F(Yc, y,, ~.) is a real symmetric matrix, it has only real eigenvalues. With the 
help of the lemma of Gerschgorin one can find a number  of conditions which are 
sufficient for only negative eigenvalues of the matrix F. 

At first the three elements of the main diagonal must be negative, therefore, 

e < 0, (B.3) 

kd/k4 + 2b > 0, (B.4) 

2c > f .  (B.5) 

A calculation shows that it is not possible to find specifications for a - f  so that all 
non-main-diagonal-elements vanish for all parameter  values. So one has to look 
for functions for a - f  which guarantee that these elements are small compared with 
the main diagonal elements: 

12ekal > [fk 4 - -  k3(2ak/k4 + d)l + Iks(d - e) + 2ck41, (B.6) 

12k3(kd/k4 + 2b)[ >lfk4 - k3(2ak/k4 ÷ d)[ 

q- 12bk5 - ekk3/k4 - f ( k 3  ÷ ks)l,  (B.7) 

12ks0 c - 2c)1 >lks(d - e) ÷ 2ck4l 

÷ 12bk5 - ekk3/k4 - f ( k 3  ÷ k5)l. (B.8) 

If  conditions (B.3) to (B.8) are fulfilled, it follows from the lemma of Gerschgorin 
that all eigenvalues of  the form matrix are negative. In order to simplify the calcula- 
tions we choose 

2ck4 + dk5 
- , ( B . 9 )  e ks 

- a k 3 ) k 4  a = (B.10) 
2k3k 

Condit ion (B.3) now reads 

2ck4 < -dk5 . (B. 11) 

Condit ions (B.4) and (B.5) remain uneffected, (B.6) vanishes and (B.7), (8.8) sim- 
plify to 

[2k3(kd/k4 ÷ 2b)l > 12bk5 - ekk3/k4 - f ( k 3  ÷ k5)[, (8.12) 
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12k50 c - 2c)1 > 12bk5 - ekk3/k4  - f ( k 3  + ks)l . (B.13) 

The sufficient condition for the existence of only negative eigenvalues ofF(2,  p, 2) 
now consists of conditions (B.4), (B.5) and (B.9) to (B. 13). If now functions of the 
parameters ki for b, c, d , f  can be formulated which fulfill these conditions and the 
conditions for the Lyapunov function (38)-(40), then a Lyapunov function 
Vs = f ( a ,  b, c, d, e , f )  that proves the global stability in a finite surroundings of the 
steady state is found. From (B.9), (B. 11) it follows immediately that 

d = - 2 c k 4 / k 5  - E1 (q > 0) (B.14) 

and therefore 

e ~ --E 1 . (B.15) 

From (B.4) it follows that d = - 2 b k 4 / k  + e2, (e2 > 0), and therefore with (B. 14) 

b = k ( c / k 5  -Jr- (el -t- e2) / (2k4))  > 0 .  (B.16) 

Condition (B.5) is fulfilled with 

f = 2 c - e 3  (e3>0)  (B.17) 

and so (B. 10) reads 

a = k 4 / ( 2 k 3 k ) ( k 4 ( 2 c  - E3) --}-k3(2ck4/k5 -Jr- El)) .  (B.18) 

With (B. 14) to (B. 18) conditions (B. 12), (B. 13) read 

2kk3E2 > [(k3 + ks)(qk + e3k4 - 2ck4) + k(e2k5 + 2ck4)], (B.19) 

2k4kse3 > ](k3 + ks)(elk + e3k4 - 2ck4) + k(E2k5 + 2ck4)1. (B.20) 

If one chooses 

e2kk5 q- e3k4(k3 q- k5) 
c = 2k4(k3 + ks - k) ' (B.21) 

one has fulfilled the necessary conditions c > 0 and (because of 2c > E3) a > 0 [cf. 
(38)] and (B. 19), (B.20) simplify to 

2k3e2 > (k3 + ks )q ,  

2k4kse3 > k(k3 -t-ks)el . 

It follows immediately that 

e2 = (k3 q- ks)E1/ (2k3)  q- g2 (g2 > 0 ) ,  

e3 --- k (k3  q- k s ) e l / ( 2 k 4 k 5 )  q- g3 (g3 > 0 ) .  

In order to simplify the calculations we choose 

(B.22) 

(B.23) 

(B.24) 

(B.25) 
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el = 1/ (k3 q- k5), ~2 = 1 / (2k3) ,  g3 = k/(2k4k5), (B.26)  

which gives the results (43)-(48). A further calculation yields that the necessary 
conditions for a Lyapunov function (39), (40) are always fulfilled. Therefore, the 
global stability in the surroundings of  the nontrivial steady state in the parameter 
range 0 < k < k3 + k5 is proven. 
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