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Recently we presented an up to now unstudied three-dimensional dynamical system
which is, according to our given definition, the smallest chemical reaction system with
Hopf bifurcation. We here study the Hopf bifurcation in detail and prove that near the
bifurcation point a stable limit cycle arises. In the analysis we use the methods of local
bifurcation theory, especially the center manifold and the normal form theorem. In a
similar way we analyse the also occurring transcritical bifurcation. Besides studying
local stability, we give the proofs for global stability of the trivial steady state in the
whole positive phase space and for the nontrivial steady state in a closed domain con-
taining the steady state point.

1. Introduction

In a previous paper [1] we presented the smallest chemical reaction system
with Hopf bifurcation. Its mechanism is depicted in scheme 1. In the definition for
what we do mean by the “smallest’ system we stressed the fact that the system is
the mathematically most simple one with this kind of dynamic behavior. So it is the
only three-component chemical reaction system with Hopf bifurcation that
contains besides linear terms only one quadratic nonlinearity in its differential
equations:

x =kx—kyxy,
jl ES —k3y +k52,
i'=k4x~—k52 (1)

with k = k1A — k4 and k; > 0 where k; and A4 denote rate constants and the fixed
concentration of the outer reactant of the autocatalytic reaction, respectively. Due
to its simplicity the system is well suited for further mathematical treatment.
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Scheme 1. Reaction scheme of the smallest chemical reaction system with Hopf bifurcation.

All (quantitative) information about the system would be gained if one could
integrate it in an analytical manner. Because of the nonlinearity in the differential
equations there is no general algorithm to do so. One can write the nonlinear system
(1) of three differential equations of first order in the form of one nonlinear differ-
ential equation of third order;

% = x(—ks — ks + 3%/x) + x(—ksks + x/x (k3 + ks) — 2(x/x)?)
+ k5x(kk3 - k2k4x) s (2)

but no analytical solution for this system is known, neither in the form of (1) nor
(2) (cf. e.g. [2]). With numerical integration we can obtain a picture of the system
behavior which is in the most cases correct. (A well-known example for a wrong
numerical result is the integration of the oscillator with feedback inhibition given
by Goodwin (cf. [3]).)

In [1] we have shown numerically that system (1) possesses a stable limit cycle.
Of course it is important to give an analytical proof for this result. A detailed anal-
ysis of the Hopf bifurcation, using the methods of local bifurcation theory, espe-
cially the center manifold and the normal form theorem (cf. [4]), proves that a
stable limit cycle arises. In a similar way we do also study the second occurring
steady state bifurcation, the transcritical bifurcation.

Besides detecting and analysing the bifurcation points it is important to study
the global stability in order to obtain a reliable right picture of the qualitative
system behavior. For the parameter region where the trivial steady state
(x = y = Z = 0) is stable we give a simple Lyapunov function to show that this state
is also globally stable. Although numerical integrations indicate that also the non-
trivial steady state is globally stable in the region of local stability we could not
find a suitable Lyapunov function for proving this result for the whole positive
phase space. However, we are able to give a Lyapunov function which proves the
global stability in a certain domain containing the steady state point. Furthermore,
we show that for proving the global stability in the whole positive phase space an
appropriate Lyapunov function must be more complicated than a surface described
by only first or second order terms.
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2. Local analysis
2.1. LINEAR STABILITY ANALYSIS

The system (1) has two steady states:
l. xi=y1=2=0, 3)

2. X = kk3/(k2k4), Yy = k/kz, Zy = kk3/(k2k5) . (4)

It follows from the Hurwitz criterion that the first steady state is stable within the
range —k4 < k < 0 and the second one within the range 0 < k < k3 + ks (cf. [1]).
The bifurcation diagram is given in fig. 1.

The system has two bifurcation points. At k = 0 there only exists the trivial
steady state at which the Jacobian has two real negative eigenvalues and one which
equals zero. In the bifurcation diagram it can be seen that this point seems to be a
point of a transcritical bifurcation. At the second bifurcation point k = k3 + ks the
trivial steady state is locally asymptotically unstable whereas the Jacobian at the
positive steady state has one real negative and two purely imaginary eigenvalues, so
it seems to be a Hopf bifurcation point. At both bifurcation points the Jacobian of
the system has at least one eigenvalue with a real part equal to zero so that one can-
not deduce the local stability behavior from the linear analysis.

2.2. ANALYSIS OF THE SYSTEM AT THE BIFURCATION POINTS WITH THE
METHODS OF THE LOCAL BIFURCATION THEORY

A general aim of bifurcation theory is to get a classification of as many as possi-
ble different types of bifurcations. The theory is fairly complete only for the so-
called codimension one and two bifurcations which can be contained in a parameter
space of dimension at least one and two, resp. (see [4]). Both the transcritical and
the Hopf bifurcation are codimension one bifurcations, so the detailed analysis
could be simplified by using the already known general theorems (cf. [5,6]). Never-
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Fig. 1. Bifurcation diagram for system (1). - - - unstable, —— stable steady states.
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theless we want to analyse both bifurcations in a unified manner using the methods
of local bifurcation theory. At first we reduce the dimension of the problem at the
bifurcation point using the center manifold theorem. In this way one can already
extract all relevant information about the transcritical bifurcation. For simplifying
the flux in the center manifold the normal form theorem is used in order to remove
all nonnecessary terms up to a certain order while retaining the right qualitative
behavior of the system at the bifurcation point. The result of this simplification is
the so-called normal form of the flux which makes for the codimension two bifurca-
tions and the Hopf bifurcation some symmetry properties of the bifurcation appar-
ent [4]. The normal form of the flux in the center manifold at a Hopf bifurcation
point contains for example no quadratic terms and is symmetric under the transfor-
mation (x,y) — (—y, x).

2.2.1. The transcritical bifurcation

In this section we analyse the system behavior at the point & = 0. At this bifurca-
tion point the system has only the trivial steady state X = y = z = 0. The eigenva-
lues of the Jacobian at this point are

)\1 = 0; )\2 = —k3; A3 - —k5 .

Using the eigenvectors as the basis for a new coordinate system, equation system
(1) can be transformed with the linear coordinate transformation

X u
=T| v},
z w

which involves the transformation matrix

k
75 0 0
T=|% 1 1 (5)
[0 s
into the system
i k 0 0 u 1
. kg o ks P_S_kz
v ES k3_k3k5 3 kv — kzu k—3u + v+ W) 3—k3k5 5 (6)
. k k k
W w0 ks w oy

where the linear part at k = 0 is in standard (diagonal) form. After adding k = 0
as a fourth differential equation to system (6) it follows from the center manifold
theorem (cf. [4]) that at (0, 0, 0, 0) exists a two-dimensional center manifold W*¢ tan-
gent to the plane spanned by the u- and k-axis. Therefore, W* can be approximated
for the two variables v, w by the equations
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v(u, k) = ai® + Byuk + v,k + O(3), (7

w(u, k) = O‘wu2 + Buuk + ")’wk2 +0(3),
where O(3) denotes terms of order 3, u?k, uk® and k3. With

. ov. Ov;

'U(u,k) - %u—kﬁk, (8)
0 ow .

w(u,k)=-6—:u+3:-k,

together with (6) and (7) after comparison of the coefficients for 42, uk and k2 fol-
lows the center manifold as an analytical expression for v(u, k) and w(u, k) up to sec-
ond order. In this way one can approximate the center manifold up to any desired
order. Inserting the so obtained expressions for v, w into the differential equation
for u in system (6) one obtains approximately the flux in the center manifold which
determines the dynamic behavior of the system in this case. Since the functions
v(u, k), w(u, k) are at least expressions of second order which are in the equation for
u in (6) multiplied by u they can give only terms of order three and higher. There-
fore, the flux in the center manifold up to second order reads

i¢=u<k—-£€]2c7k5u) + O(3), 9)

k=0.

Eq. (9) expresses the normal form of a transcritical bifurcation, so it is proven
that at the point k = 0 this bifurcation occurs. Sketching the flux in the center mani-
fold according to (9) one obtains the bifurcation diagram of a transcritical bifurca-
tion. From (9) it can also be seen that the bifurcation point itself is locally stable
for positive values of u and unstable for negative values. It follows from the inverse
of the transformation matrix T [eq. (5)] that u = k4/ksx. Therefore, u is positive
for all positive values of x. Since the trajectories are confined to the positive
orthant, the trivial steady state is locally stable at the transcritical bifurcation
point.

2.2.2. The Hopf bifurcation

For analysing system (1) at the second bifurcation point k = k3 + ks we introduce
for the sake of simplicity the new time scale 7 = kst to eliminate the parameter ;3.
Withk/ks — k, ki/ks — ki, (i = 2,4, 5) the equation system reads

x =kx — kaxy,

y=“)’+kSZ,
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2 =kax — ksz. (10)
The nontrivial steady state (4) at which the Hopfbifurcation occurs now reads
X = k/(koka); y=klks; Z==k/(koks). (11)
[cf. eq. (4)]. The Jacobian of (10) at (11) follows as
0 —k/ksy O
J=10 —1 ks |. (12)
k4 0 —ks

If the parameters fulfill the condition k = 1 + ks this Jacobian has one negative
real and two purely imaginary eigenvalues:

A= —1—ks; X3 = ivks, (13)

so the first condition for a Hopf bifurcation in the sense of the theorem given, e.g.,
in [4,7] is fulfilled. Nevertheless, for applying the Hopf bifurcation theorem a sec-
ond condition must be fulfilled. The conjugate complex eigenvalue which is imagin-
ary at the bifurcation point, A,/3(k), must, if the parameter k is varied and the
other parameters are fixed, cross the imaginary axes in the simple way:

%(Re A2/3(K) i1k, =d # 0, (14)

where Re )y3(k) denotes the real part of A which is a smooth function of k. From
(12) follows the characteristic polynomial:

M (14 ks)MN + ks +kks = 0. (15)

We now calculate d as defined in (14) without solving (15) explicitly. Inserting
u + iw for the complex eigenvalue into the characteristic polynomial (15) yields two
independent equations for its real and imaginary parts. After implicit derivation
with respect to k one obtains with 1 = 0 and w = v/ks [cf. (13)] an inhomogeneous
linear equation system which can easily be solved for w' = dw/(dk) and the
searchedd = u' = du/(dk):

ks
2(1 + 3ks 1 K2

Thus, also the second condition for a Hopf bifurcation is fulfilled and the Hopf
bifurcation theorem holds. The frequency of the arising limit cycle follows from the
imaginary eigenvalue of the Jacobian at the bifurcation point according to (13):
wlg—144, = Vks whichreads in the original parameters wl,_; ., = vkaks.

We now analyse the Hopf bifurcation of system (10) in detail. At first we give
an expression for the flux in the center manifold at the bifurcation point which is
two-dimensional (W has the same dimension as the (generalized) eigenspace of the
conjugate complex eigenvalue with zero real part.). Before using the center mani-

d= )>0. (16)
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fold theorem one has to translate the steady state (11) into the origin. In the new
coordinatesx — X — x,y — y — y,z — Z — zsystem (10) reads

X = —k/k4y - kzxy,

y=-y+ksz,

2 =kgx — ksz. (17)
With

x u

y|=T{v|,

z w
where

1 ks—ivks  kstivks
T T T
T=1] _ ks k
1 —ivks 1+ivks |’
1 1

system (17) is transformed into the diagonalised system

u —1 "‘kj 0 0 u —ks/nl
v | = 0 —ivks 0 v |+P| l/m (18)
w 0 0 i\/]?s- w 1/712

with
P=—ky(1+ ks)u? + auv + bv? + auw + bw?

ny =14 4dks + 4k + k3, m —2\/k—5 21k5+k3/2) (19)
with
a = ksky(—i+2v/ks +K2?), b =k?ky(i — iks — 2\/ks) , (20)

where an overbar denotes complex conjugation. According to the center manifold
theorem W¢ is tangent to E° = span{v, w}. Therefore one can approximate W°¢
with u = h(v, w) = av? + Bow + yw? + O(3). In the same way as already described
for the transcritical bifurcation one can find expressions for o, £, . After inserting
u = h(v, w) into the equations for v, w in (18) one obtains an approximated expres-
sion for the flux in the center manifold:

()= (o) v besmsam(() e
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with a, b, n; from (19), (20) and

pm o ot o JER (s + iVEs(—1 + dks + KD))

In the second step we now simplify the expression for the flux in the center manifold
by removing all of the redundant nonlinear terms. The most simple expression is
the normal form which still contains all information about the qualitative behavior
of the system at the bifurcation point. With a further linear coordinate transforma-
tion, system (21) can be rewritten into a form which only contains real numbers giv-
ing the so-called standard form. With

()= =0 7)

it follows that
€ = — Vsx + 2k¥ea(ks(x* — &) + Vks(1 = ks)éx) /m
+ Ak (2Ues (2 + ks)E + Vks(—4 + Ths + 62 + k)2
+ (1 = 8ks — 3K3)ex* + 2v/ksx*) /m, (22)

X = Vkst + sk (ks (1 + 2ks)(€ — x*) + (=1 — ks + 2k2)&x) /m
+ 4R (—2ks (2 + Sks + 2k3)E + ks (4 + ks — 20k — 13Kk
— 2N + (=1 + 6ks + 192 + 6k3)ex? — 2/ks(1 + 2ks)x>) /n

with n; from (19), n = (1 + 6ks + k2)(1 + ks)*(1 + 3ks + k%)*. Guckenheimer and
Holmes [4] have explicitly shown that on the basis of the normal form theorem one
finds a nonlinear coordinate transformation which transforms every system with
the structure

&= —wx+o(lEl, IxI) (23)

X = w& +o(|¢], [x])

into the system

U= —wv+ (au — bv)(* + %) + O4), (24)

¥ = wu + (av + bu)(? 4+ 1*) + O(4),
which is expressed in polar coordinates as
F=ar, (25)

6=w+br*.
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It can be seen that the sign of a determines the stability of the steady state at the
Hopf bifurcation point. If one knows the general structure of the normal form then
one can calculate the occurring coefficients in detail. Guckenheimer and Holmes
carried out the procedure for calculating the coefficient a and gave the formula

a = 1/16(fxxx +fxyy + gxxy + gyyy
+ l/w(fxy(fxx +fyy) - gxy(gxx + gyy) “fxxgxx +fvygyy)) ’ (26)

where f, denotes (8%f/0x8y)(0,0), etc. and f, g are the functions containing the
nonlinear terms of eq. (23). In the same way one can find an expression for the coef-
ficient b. It follows that

b= 1/16(gxxx + Zxyy —fxxy "‘f:vyy
+ 1/ (3w)(5(fxx8xy + fry&yy — fexlyy _fy?} — Exx8yy — gix)
= 2[5 ALY 8y &) + S8+ fr8x) - (27)

Applying egs. (26), (27) to expression (22) which has the structure of (23) one
obtains
—k3k5

= <0, 28
T T 6ks + K2)(1 + 3ks + £2) 28)

_ —k3(1 + ks)(1 + Oks + k2)

601 3k TR (1 + 6k +12) (29)
It follows from a < 0 that the steady state at the bifurcation point is a locally
(weak) stable point. Sincew = v/ks > 0 and b < 0it can be seen from (25) that there
is a critical value r = r* where the direction of rotation changes.

In appendix A we show how the normal form can be calculated in a direct way,
which of course gives the same results for the parameters a, b as (28), (29).

Up to now we have studied the system behavior exactly at the Hopf bifurcation
point where one has to analyse the flux in a two-dimensional center manifold. How-
ever, the Hopf bifurcation theorem contains even more information, because it
gives the flux in the three-dimensional center manifold containing the one param-
eter the bifurcation is depending on. Up to the third order the normal form in this
case reads

% = (dp+ a(® + y))x — (w+cp + b(x* + 7))y, (30)

j= (W4 cp+b0E+y)x+ (dp+alE +y))y,

where the parameters a, b follow from (26),(27) and 4 is calculated in the way of
(14). At p = 0 the bifurcation occurs. The Hopf bifurcation theorem states that if
the two conditions: (1) one pair of pure imaginary eigenvalues and no other eigen-
values with zero real parts and (2) condition of equation (14) are both fulfilled
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then a three-dimensional center manifold exists. If, moreover, a # 0 then there is
a surface of periodic solutions in' W*¢. If a < 0 then these periodic solutions are
stable limit cycles (supercritical Hopf bifurcation), if a > 0 they are repelling (sub-
critical Hopf bifurcation). Since a < 0 [cf. eq. (28)] we can conclude that the Hopf
bifurcation occurring in the original system (1) is for all allowed parameter values a
supercritical one and the arising limit cycles are already locally stable. In polar
coordinates, system (30) reads

F=(dp+ar)r, (31)

6=w+cu+brt.

Because the # equation is separate from 6 one can integrate it directly:

d
N J (a+ %)elj“#’ —a (32

4

Since the parameters @ and 4 are known from (28), (16) we have an up to third order
approximate expression for the radius of the limit cycle and the dynamics with
which this limit cycle will be reached depending on the parameter p.

3. Global stability analysis
3.1. THE TRIVIAL STEADY STATE

It follows from the local stability analysis that the trivial steady state is locally
stable within the range —k4 <k <0. Just from system (1) it can be seen that for the
only chemically interesting positive values of the variables it also should be globally
stable: In the given parameter range X is always negative, i.e. starting with a positive
value for xp the variable x will reach zero for # — oo. If x becomes very low, z
becomes negative, so also z will reach zero and for the same reason also y. The
mathematical proof for global stability, however, requires the finding of a suitable
Lyapunov function. For the trivial steady state this is quite easy because a simple
linear surface is already sufficient for proving the global stability: The function

V(x,y,z) =ax+by+cz (ab,c>0) (33)

fulfills the presupposition for a Lyapunov function for proving the global stability
of the trivial steady state for the whole positive orthant: V/(0,0,0) =0,
V(x,y,2z) > O0forall (x,y,z) # (%,7,Z). With (1) it follows that

v . ov. av

V= Xt B_yy +3Z—z = (ak + cks)x — bksy + (b — ¢)ksz — akaxy, (34)

so ¥ < 0 holds for all (x,y,z) # (0,0,0) of the positive orthant if one chooses
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a=—(1+e)ks/k+eb=1c=1+¢ (e,62>0). Withe; = 1; e, = —ky4/k one
obtains a nice simple expression for the Lyapunov function (33):

—3k,4
k
which proves the global stability of the trivial steady state for k < 0.

Vix,y,z) = x+y+2z, (35)

3.2. THE NONTRIVIAL STEADY STATE

The second steady state (4) of system (1) is locally stable within the parameter
range 0<k<k; + ks. Numerical integrations for different initial values in this
parameter range suggest that it is also globally stable. Generally a Lyapunov func-
tion for a mathematical proof of global stability is at first searched among the class
of surfaces of first or second order. It is now shown that one cannot prove the global
stability for the whole positive orthant of the phase space with a quadratic surface.
The most general form of itis

V(x,y,z) =ax* +by* +c22 +dxy+exz + fyz+gx+ hy + iz. (36)

A suitable Lyapunov function V has the properties V(x,7,z) =0, V(x,y,z) > 0if
(x,y,2) # (%,7,Z), which gives the following conditions for the quadratic surface
(36):

g hi=0, (37)
a,b,c>0, (38)
4ab > d? dac > &*, 4bc> f?, (39)
4abc + def > cd® + be* + af? . (40)

Of course the center of the so described ellipsoid must correspond to the steady
state. The function ¥ now reads

Vi(x,,2) = a(x = %) + b(y = 7)* + ¢z~ 2)
+d(x-x)(y-y)+e(x=x3)(z-2)+f-y)(z-2) (41)
and it follows with (1) that
V, = x(gk + iks) — hksy + ksz(h — 1) + x*(2ak + eks) — 2bksy*
+ ksZ2(f — 2¢) + xy(dk — gka — dks + fka) + xz(ek + 2ck4
+ ks(d — €)) + yz(2bks — f (ks + ks)) — 2akyx’y
— dkyxy* — ekyxyz, (42)

where g = —2ax — dy — ez, h = —2by — dx — f2, 1 = —2cz — ex — 7. Global sta-
bility holds if the parameters a, b, c,d, e,f can be specified so that V; < 0 for all

2
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(x,7,2) # (X,7,Z). A necessary condition for that is that the summands for x? and
xyz in (42) both have a negative sign which for the interesting parameter range
k > 0 can never be true. So it can be seen that a quadratic surface cannot serve as a
Lyapunov function for proving the global stability of the nontrivial steady state
for the whole positive phase space.

However, if one specifies a, b, ¢, d, e, f in (41) in the following way:

_ k4((k3 +k5)(k§/k3 +k%/k5 +k + ks —}-k5/k) +k3)

43
2k3k5(k3 + k5)(k3 + ks — k) ’ ( )
b:i(k(lﬂ/ks +ks/ks+1)  2k3+ks ) (44)
2k \ ks(ks + ks — k) ks (ks + ks)
k(ks/ks +ks/ks + 1) (45)
2k4(k3 + ks — k) ’
kika ks + ks s +1) 1
_ _ , 46
d ks(ks + ks — k) k3 + ks (46)
: @7)
e=——r
ky + ks ’
k(k% + kks) (48)

= kakaks(ks + ks — k)’

one obtains a Lyapunov function which proves the global stability in certain finite
surroundings of the steady state for the whole parameter region 0 < k& < k3 + ks.
(Appendix B shows the way for finding these specifications.) Numerically one can
find the extent of this region in calculating the scalar product of grad(V) and
(x,y,2) for each point of the surface starting with small values of ¥ and increasing
V successively in small steps up to a value where at least one trajectory is directed
outwards. Fig. 2 shows projections on the x, y-plane of the ellipsoids inside which
the global stability is proven for six different values of the parameter & taken from
the wholeregion 0 < k < k3 + ks.

For the parameter region k > k3 + ks it would be very interesting to find a con-
fined set, i.e. an outwards impermeable closed surface, containing the limit cycle in
its inside. On this basis it could be possible to prove the existence of the limit cycle
for the parameter & in a finite distance from k3 + ks (cf. [3]) and eventually for a cer-
tain domain the global stability of the limit cycle. The conditions on a general quad-
ratic surface (36) for describing a closed surface V., are the same as for the
Lyapunov function V; (37)-(40) without conditions (37). For V.s one therefore
obtains again expression V; (42) plus terms containing g, 4,i. Now V., < 0 must
hold not for all but only for x, y, z belonging to the surface corresponding to the one
specified, V., = const. Finding appropriate functions a = fi(k;),...,i = fo(k;) so
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Fig. 2. Regions of proved global stability for six different parameter values: ky = k3 = kg = ks = 1,

k=03,06,009,1.2, 1.5, 1.8 (from left to right) as projections on the x, y-plane. The corresponding

maximal values for ¥ of (41) with the specifications (43)—(48) where still all trajectories are crossing
the surface inwards are: 0.06,0.12,0.16,0.16,0.12,0.07.

that this condition holds is, if at all possible, difficult. One therefore better use
more refined methods such as, e.g., the construction of an auxiliary system of dif-
ferential equations the solution of which describes the searched positive invariant
set (see [8]).

4. Discussion

By analysing the Hopf bifurcation we have shown that the arising limit cycle is
locally stable near the bifurcation point. This raises the question of local stability of
the limit cycle at finite distances from the bifurcation point and for eventual global
stability of the limit cycle. With numerical integration we found a globally stable
limit cycle for the whole parameter region with two locally unstable steady states.
Generally the question of local stability of a limit cycle is handled in the framework
of the Floquet theory. Unfortunately, we are not able to use this theory because
we do not have an analytical expression for the limit cycle to linearise the system
around it. But even if we could do so for systems with more than two variables there
are no general methods available for calculating the characteristic multipliers or
exponents which are the relevant quantities for the local stability of the limit
cycle.

One presupposition for proving global stability would be to find a closed surface
containing the whole periodic orbit at which the vector field always points inward.
Going on in this way Tyson [3] was able to prove the existence of a simple closed
orbit for the Goodwin oscillator using Brouwer’s fixed point theorem but not the
stability itself. We have shown that it is too difficult to find such a surface among
the class of quadratic surfaces and one should better use other methods for that pur-
pose, such as the description of the closed invariant domain by the solution of an
auxiliary system of differential equations (cf. [8]).
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In [1] system (1) was defined as the smallest chemical reaction system with
Hopf bifurcation in a mathematical sense. In our given definition for the smallest
system, the feature ‘“lowest number of quadratic terms in the first order differential
equation system’’, which expresses mathematical simplicity, has a higher priority
than “lowest number of reactions”’, which is obviously more important for simpli-
city in a physical sense. However, system (1) can be transformed into another,
mathematically equivalent, form. All expressions which represent the system in the
form of three first order differential equations, e.g. the diagonalised form at the tri-
vial steady state [cf (6)], cannot be easier than (1) or (10), because the quadratic non-
linearity cannot be removed. It is interesting to note that system (1) expressed as
one nonlinear third order differential equation [cf. (2)] looks quite complicated and
it cannot be excluded that a chemical reaction system with Hopf bifurcation may
exist which, if written in the form of one third order differential equation, is easier
than (2) and perhaps even accessible for an analytical integration. However,
usually one uses first order differential equations for expressing a chemical reaction
system and employs also this form for a first mathematical analysis.

Unfortunately, there seems to be no way to integrate eq. (2) at least one time to
decrease the order of this differential equation. If one could do so one could exclude
a lot of the potentially possible dynamic phenoma in three-dimensional systems.
Although numerically we did not find more complicated behavior than a simple
closed orbit it remains an open question whether there are parameter values at
which the system shows, e.g., folded orbits, quasiperiodicity or chaos.
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Appendix A

In this appendix we show how to calculate the normal form (24) with a nonlinear
coordinate transformation directly.

The Jacobian of a differential equation system at a Hopf bifurcation point has
two imaginary eigenvalues with a resonance of third order A; + A\ = 0. If there are
no second order resonant eigenvalues it follows from the theorem of Poincaré that
with a suitable variable transformation all quadratic but not all cubic terms of
this system can be eliminated. From the theorem of Poincaré-Dulaque it follows
that it is possible to transform a two-dimensional system at a Hopf bifurcation
point into the form given in eq. (24), which only contains the resonant terms. In the
following we calculate the two coefficients a,b. At first the standard form of the
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flux in the two-dimensional center manifold at the Hopf bifurcation point (22) is
transformed into a single complex equation:

5= Az +h(z,7), (A1)

where Z denotes complex conjugation, with

A =iw=ivk,

h(z,2) = auz” + 12 + 32 + w2’z + a5z + a2’ + O(|2|%),
where

ajZXj+iyj(j= 1,,6)
with

x; = (by — 2ax)/4 y1 = (2a,— by)/4,

x2 = (—2ax — by)/4  y2 = (2ay + bx)/4,
x3=(cx+dy—ex—1f))/8 yi=(fx+c,—di—¢)/8,

x4 = (Bex+ex+d, +3£,)/8 ya= (3¢, +e,—d.—3f,)/8,
xs = (3cx+ex—dy,—3f,)/8 ys=(de+3fi+3¢c,+¢)/8,

xe=(cx+fy—ex—dy)/8 ye=(di+c,—fi—¢)/8
with
a, =2ky/m  a, = 2K %k (1 + 2k) /my

by =2y (1 — k) /my by = 2kkoy(—1 — k + 2K%) /my
cx =822+ k)/ny ¢, = —8K"HE(2 + Sk + 2k2) [ny

dy = MU (—4 + T + 6K + 1) /ny
d, = 4 (4 + k — 2062 — 13K — 2k*) /m;

ex = k(1 — 8k — 3k%) /my
ey = 45215 (—1 + 6k + 19K + 6K%) /ny,

S =8Py f, = —8KKG (1 + 2k) [my
with
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ny = (1+k)(143k+Kk),n =n?(1 + 6k +i?).

It follows from calculations based on the normal form theorem (see [4]) that the
normal form of the flux in the center manifold at a Hopf bifurcation point has the
structure given in eq. (24) which in the complex form reads

W= w4 W + oW + ... (A.2)
with ¢; = a; + ib;. We now use the nonlinear coordinate transformation

z=w+ P(w, W), (A.3)
where 1) is expressed as a Taylor series

(W, ®) = Py /2 + e + Yagiv® /2 (A.4)

+ wwwww3/6 + wwwwwzw/z + "/)wwwwwz/z
+ Yamaw /6 + O(|w[*) ,

to transform eq. (A.1) into the form of (A.2) and so to determine the coefficients
¢; by equating the coefficients of the different [w|*—, |w]*—, etc., terms. From (A.3)
and (A.2) it follows that

=W+ YW+ PpW
= )\w+c1wzw+c2w3wz+...
+ (YW + Yo + 1/ 28 W + oW + 1/ 20,557 + O(|w[*))
(w4 W+ oW’ w? +..)
+ (Pwiw + VoW + 1/29%0ueW? + Yyaaw® + 1/ 2050w + O(w]))
Ow + i w2w + cow3w? +..) . (A.5)
From (A.1) and (A.3) it follows that
=AW+ ) + a1 (w+9)’ + (@ + %) + es(w +9)°
+au(w+ ) (W + ) + as(w+ ) (7 +9)° + as(® + )’ (A6)

with v from (A.4). Since eq. (A.5) must equal (A.6) for the O(lw[z)—tcrms follows
the equation

)"‘/)www2 + )\wwwww + wwwmw + "/}WW)—WVV

= AW /2 + P + Yu®?/2) + oy w? + . (A7)
Equating the coefficients of w?, wiv and w” yields
"/)ww = 20‘1/)‘1 (AS)

wwﬁl - 01 (A9)
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Yw = —202/(3)) . (A.10)
By equating the coefficients of the w?#-terms of (A.5), (A.6) it follows that

c1 = 2a1%ws + s + o4, (A.11)
and therefore with (A.9), (A.10) the first coefficient of the normal form (A.2):

2i 2
¢ = ———=lo|" +as. A.12
=3 \/IZI 2|” + o4 (A.12)
Inserting o and a4 of (A.l) gives the expressions of (28), (29) for
a:Re(cl),b:Im(cl).

Appendix B

In this appendix we show a way of finding functions a = fi(k;), b = fa(k:),
. f =fes(k;) sothat V; = f(a,b,c,d, e, f) of (41) is a Lyapunov function for prov-
ing for the parameter region 0 < k < k3 + ks the global stability in the surround-
ings of the nontrivial steady state. The aim is reached if a—f are specified in such a
way that the function ¥; = f(x, y, z) of (42) has a local maximum at V;(X, 7, z) =0.
Asit can be seen from eq. (42) the necessary condition for an extremum
oV,
oz

av,
b ay

vV,
Ox

=0 (B.1)

(xy.3)

(i’j}’z) (215))2)

is always (i.e. for all values of the parameters) fulfilled. The sufficient condition
for alocal maximum of V; at the steady state reads: All eigenvalues of the matrix

V‘Yxx i/sxy I'/-",v:z
Fx32) =V, Vs, V.|, (B.2)
VS::: VS yz I./A'zr.

5. denotes 62Vs/ 0x* (x,7,%), etc., of the corresponding quadratic form
must be negative. From eq. (42) the matrix elements follow:

where V,

Vsn = 28k4 s

Vs

= —k3(2ak/ks + d) + fka,

Vs xz

= ks(d — e) + 2¢cka,

Vsyy = —2k;3 (dk/k4 + Zb) ,
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Vi, = 2bks — eksk [kq — f (ks + ks) ,

Vs 2z

= 2k5(f - 26‘) .

Since F(Xx,7,%) is a real symmetric matrix, it has only real eigenvalues. With the
help of the lemma of Gerschgorin one can find a number of conditions which are
sufficient for only negative eigenvalues of the matrix F.

At first the three elements of the main diagonal must be negative, therefore,

e<0, (B.3)
kd/ks+2b >0, (B4)
2c> 1. (B.5)

A calculation shows that it is not possible to find specifications for a—f so that all
non-main-diagonal-elements vanish for all parameter values. So one has to look
for functions for a— f which guarantee that these elements are small compared with
the main diagonal elements:

]2€k4] > [ﬂC4 - k3(2ak/k4 + d)l + |k5(d — e) + 2Ck4] , (B6)

|2ks(kd [k + 2b)| >| fka — k3(2ak/k4 + d)|
+ |2bk5 - ekk3/k4 — ks + ks)|, (B.7)

]2k5(f - 2C)| >]k5(d — 6) + 2(3k4|
+ ]2bk5 — ekk3/k4 —f(k3 + k5)| . (BS)
If conditions (B.3) to (B.8) are fulfilled, it follows from the lemma of Gerschgorin

that all eigenvalues of the form matrix are negative. In order to simplify the calcula-
tions we choose

2 dk
e = 2cka + dks , (B.9)
ks
_ (fka — dk3)k4
= Tk . (B.10)
Condition (B.3) now reads
2cks < —dks . (Bl 1)

Conditions (B.4) and (B.5) remain uneffected, (B.6) vanishes and (B.7), (B.8) sim-
plify to

[2k3(kd/k4 + Zb)] > 12bk5 - ekk3/k4 —f(k3 + k5)[ ) (B12)
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|2ks(f — 2¢)| > |2bks — ekkes [ka — f (ks + ks)] . (B.13)

The sufficient condition for the existence of only negative eigenvalues of F(x, 7,2)
now consists of conditions (B.4), (B.5) and (B.9) to (B.13). If now functions of the
parameters k; for b, ¢, d, f can be formulated which fulfill these conditions and the
conditions for the Lyapunov function (38)-(40), then a Lyapunov function
Vs =f(a,b,c,d, e, f) that proves the global stability in a finite surroundings of the
steady state is found. From (B.9), (B.11) it follows immediately that

d = —2cks/ks — €1 (e >0) (B.14)
and therefore

e=—e. (B.15)
From (B.4) it follows thatd = —2bk4/k + €3, (€ > 0), and therefore with (B.14)

b=k(c/ks+ (e1 + €)/(2ks)) > 0. (B.16)
Condition (B.5) is fulfilled with

S=2c—e5 (e3>0) (B.17)
and so (B.10) reads

a = ka/(2ksk)(ka(2¢ — €3) + k3(2cks ks + €1)) . (B.18)
With (B.14) to (B.18) conditions (B.12), (B.13) read

2kkse; > |(k3 + ks)(e1k + esks — 2cks) + k(exks + 2cks)|, (B.19)

2kakses > |(ks + ks)(erk + esks — 2ck4) + k(exks + 2cks)| . (B.20)
If one chooses

_ e2kks + eska(ks + ks)
- 2k4(k3 -+ ks — k) ’

one has fulfilled the necessary conditions ¢ > 0 and (because of 2¢ > €3) a > 0 [cf.
(38)] and (B.19), (B.20) simplify to

(B.21)

2ksez > (k3 -+ k5)61 , (B.22)

2kakses > k(k3 + k5)61 . (B.23)
It follows immediately that

€2 = (ks +ks)e1/(2ks) + & (& >0), (B.24)

€3 = k(k3 + k5)€1/(2k4k5) + €; (€3 > 0) . (B.25)

In order to simplify the calculations we choose
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€] = 1/(/(3 +k5), € = 1/(2k3), € = k/(2k4k5), (B26)

which gives the results (43)~(48). A further calculation yields that the necessary
conditions for a Lyapunov function (39), (40) are always fulfilled. Therefore, the
global stability in the surroundings of the nontrivial steady state in the parameter
range 0 < k < k3 + ks is proven.
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